Mobiele menu

Bioelectricity to mature electrophysiological characteristics of human stem cell derived cardiomyocytes: a new competitive model in drug safety testing

Projectomschrijving

Ronde 2015 Module Maatschappelijke Partners: Het ontwikkelen van nieuwe en verbeterde medicamenten ter behandeling van allerlei ziektes in mensen is een traag, kostbaar en relatief inefficiënt proces. Een belangrijke oorzaak is dat voor het testen van de veiligheid en effectiviteit van nieuwe medicamenten dierproeven gedaan worden die echter een relatief beperkte voorspelbaarheid hebben ten aanzien van de situatie in mensen. Een veel voorkomende bijwerking van medicamenten is het ontstaan van hartritmestoornissen doordat elektrische stroompjes in het hart verstoord worden. Om deze schadelijke bijwerking betrouwbaar uit te kunnen sluiten hebben wij laten zien dat testen in hartspiercellen die gemaakt worden uit humane stamcellen, de voorspelbaarheid aanmerkelijk doet verbeteren ten opzichte van testen in dieren. Om deze testen breed in te kunnen zetten moet er nog 1 bepaalde elektrische eigenschap van de hartspiercellen worden verbeterd en dat gaan we in dit onderzoeksvoorstel op 3 verschillende manier doen. Dit zal er toe leiden dat deze manier van testen door de farmaceutische industrie (partner in dit project) zal worden overgenomen wat testen op dieren voor een fors gedeelte overbodig maakt.

Producten

Titel: Required GK1to Suppress Automaticity of iPSC-CMs Depends Strongly on IK1 Model Structure
Auteur: Fabbri A Goversen B Vos MA van Veen TA de Boer TP
Magazine: Biophysical Journal
Titel: A Hybrid Model for Safety Pharmacology on an Automated Patch Clamp Platform: Using Dynamic Clamp to Join iPSC-Derived Cardiomyocytes and Simulations of IK1 Ion Channels in Real-Time
Auteur: Goversen, Birgit, Becker, Nadine, Stoelzle-Feix, Sonja, Obergrussberger, Alison, Vos, Marc A., Veen, Toon A.B., Fertig, Niels, de Boer, Teun P.
Magazine: Frontiers in Physiology
Titel: The immature electrophysiological phenotype of iPSC-CMs still hampers in vitro drug screening: Special focus on IK1
Auteur: Goversen, Birgit, van der Heyden, Marcel A.G., van Veen, Toon A.B., de Boer, Teun P.
Magazine: Pharmacology and Therapeutics
Titel: The influence of hERG1a and hERG1b isoforms on drug safety screening in iPSC-CMs.
Auteur: Goversen B Jonsson MKB van den Heuvel NHI Rijken R Vos MA van Veen TA de Boer TP
Magazine: Progress in Biophysics and Molecular Biology
Titel: Introducing simulated IK1 into human iPSC-cardiomyocytes using dynamic clamp on an automated patch clamp system
Auteur: Stoelzle-Feix S, Becker N, Obergrussberger A, de Boer T, Goversen B, van Veen TA, Fertig N.J.
Magazine: Journal of Pharmacy and Pharmacology
Titel: Commentary: Reciprocal Modulation of IK1–INa Extends Excitability in Cardiac Ventricular Cells
Auteur: Goversen, Birgit, de Boer, Teun P., van der Heyden, Marcel A.G.
Magazine: Frontiers in Physiology
Titel: Controlling action potential firing by light in iPSC-CMs using Channelrhodopsin-2
Auteur: Birgit Goversen, Toon AB van Veen, Malte Tiburcy, Wolfram H Zimmermann, Marc A Vos Teun P de Boer
Titel: Quantifying the impact of leakage current on hiPSC-CMs action potential waveform: an in silico investigation
Auteur: Fabbri A Goversen B de Boer TP
Titel: GK1,critical required for suppression of automaticity of hiPSC-CMs in dynamic clamp experiments depends strongly on IK1 formulation
Auteur: Fabbri A Goversen B Vos MA van Veen TA de Boer TP
Titel: Controlling action potential firing by light in iPSC-CMs using Channelrhodopsin-2
Auteur: Birgit Goversen, Toon AB van Veen, Malte Tiburcy, Wolfram H Zimmermann, Marc A Vos Teun P de Boer
Titel: Nanion Dynamite8
Auteur: N Fertig TP de Boer
Titel: Modulating human iPSC-CM electrophysiology for in vitro drug screening.
Auteur: Goversen B

Verslagen


Samenvatting van de aanvraag

Development of new drugs to treat any human disease is compromised by potential adverse side effects induced by the candidate drugs. A common and dangerous reason for attrition of a drug is the life-threathening disturbance of the heart rhythm. To exclude candidate drugs that disturb heart rhythm, drugs are tested in pre-clinical testing models with increasing complexity; beginning with drug-target binding assays and ending with complete large animals before clinical trails in human patients take place. Importantly, drugs are tested in animal models (cells and organs) before they are tested in humans. In this phase, drugs are rejected on basis of their adverse effects in animals, but it is well known that the mechanisms underlying animal heart rhythm (especially that in rodents) are significantly different from that in humans. As a result, candidate drugs are rejected that may very well have a desired performance in humans, or on the other hand considered safe in the animal while being detrimental in humans. As a consequence of the complex testing process, development of new drugs requires a large amount of animals, is very expensive, time consuming and heavily burdens the health care system. Through replacing the undesired animal testing with tests on human tissues or cells instead, it is anticipated that less valuable candidate drugs will be rejected unnecessarily. Moreover, costs will be reduced and drugs will enter the market more rapidly. Since healthy human cardiac tissue is unavailable, in the previous ZonMW-3V project (40-401000-96-8301) we have evaluated the possibility to develop a human drug-screening model based on human embryonic stem cell-derived heart cells (hSC-CM). In this project we started PPPs with leading companies within this field. We were able to identify the prerequisites with respect to the characteristics of the cells, standardized the conditions for measurements and showed that the system is sensitive and specific enough to recognize those drugs that are potentially pro-arrhythmic through interference with the repolarizing current Ikr. Sensitivity and selectivity appeared comparable to contemporary used animal models and superior to models including single cardiomyocytes isolated from these animals. However, the relative electrical immaturity of hSC-CM limits their usability for unbiased drug screening. An important factor in the immaturity is absence of one specific cardiac ion channel, Ik1, which is constituted by Kir2.1 proteins. The absence of this current negatively affects the functioning of other ion-currents and through this, limits the cells to respond appropriately to drugs that e.g. interfere with sodium or calcium channels. Application of a system biology approach with computer simulations learned that if we are able to introduce a well-balanced Ik1 current in those hSC-CM, they will become fully responsive and predictive for any ion-channel modulating drug. Next to hSC-CM we will perform the same experiments on cardiomyocytes generated from induced pluripotent stem cells. The latter source allows inclusion of patient-specific aspects of drug safety testing. To succeed in this we have defined 3 different strategies which we aim to explore in the current proposal 1) we will develop a hybrid model, in which hSC-CM are coupled to a real-time computer that adds simulated Kir2.1 channels to the hSC-CM (dynamic clamp). As a result, the hybrid model will behave with the necessary maturity. The hybrid hSC-CM model will be tested using well-evaluated drugs, and its predictive power with respect to heart rhythm disturbances will be compared with existing data from animal models and previous measurements on untreated hSC-CM. 2) We will use co-culture systems of hSC-CM and transfected cells expressing proteins that create the Ik1 current to introduce the current electrotonically into the hSC-CM. Arrhythmogenic testing will be performed at the host institute as described in 1. 3) We will stimulate and investigate the endogenous mechanisms that lead to electrical maturation of the hSC-CM. In this respect, a library screen of small molecules is under construction through our international collaboration. To achieve in this project we feel that we have collected a well-balanced and proven succesful consortium with input from both the academy and industry. We anticipate that we will be able to show that upon electrical maturation, such hSC-CM will generate a model which is sensitive and predictive enough and able to replace several phases in drug safety testing for which tests on a tremendous amount of animals can be prohibited.

Onderwerpen

Kenmerken

Projectnummer:
114021501
Looptijd: 100%
Looptijd: 100 %
2015
2023
Onderdeel van programma:
Gerelateerde subsidieronde:
Projectleider en penvoerder:
Dr. A.A.B. van Veen
Verantwoordelijke organisatie:
Universitair Medisch Centrum Utrecht