Mobiele menu

Learning to resist Alzheimer’s disease:Novel molecular mechanisms that protect neurons against amyloid-beta


Op dit moment is er geen therapie voorhanden die de ziekte van Alzheimer kan remmen of kan voorkomen.


Onze strategie om Alzheimer tegen te gaan is gebaseerd op het gegeven dat mensen die zich frequent bezig houden met intellectuele activiteiten gemiddeld pas op latere leeftijd Alzheimer-gerelateerde cognitieve problemen krijgen, ondanks de aanwezigheid van Alzheimerpathologie. De moleculaire mechanismen die ten grondslag liggen aan deze cognitieve resistentie waren echter onbekend.


Wij hebben biologische mechanismen ontrafelt die zenuwcellen resistent maken tegen Alzheimer-gerelateerde schade. Dit mechanisme wordt geactiveerd in een actief lerend brein. Deze ontdekking biedt ons de unieke mogelijkheid om te onderzoeken hoe we de mate van cognitieve resistentie kunnen meten, en nog belangrijker, om therapieën te ontwikkelen die de ziekte van Alzheimer kunnen uitstellen en misschien zelfs voorkomen.

Meer informatie


Titel: Small Scale Production of Recombinant Adeno-Associated Viral Vectors for Gene Delivery to the Nervous System
Auteur: Joost Verhaagen, Barbara Hobo, Erich M. E. Ehlert, Ruben Eggers, Joanna A. Korecka, Stefan A. Hoyng, Callan L. Attwell, Alan R. Harvey, Matthew R. J. Mason
Titel: GluA3-mediated Synaptic Plasticity and Dysfunction in the Cerebellum and in the Hippocampus
Auteur: Carla Maria da Silva Matos
Titel: Forgetting GluA3
Auteur: Niels R. Reinders
Titel: Vulnerability and resilience to Alzheimer’s disease: early life conditions modulate neuropathology and determine cognitive reserve
Auteur: Sylvie L. Lesuis, Lianne Hoeijmakers, Aniko Korosi, Susanne R. de Rooij, Dick F. Swaab, Helmut W. Kessels, Paul J. Lucassen & Harm J. Krugers
Magazine: Alzheimer's research & therapy
Titel: CERTL reduces C16 ceramide, amyloid-ß levels and inflammation in a model of Alzheimer's disease
Auteur: Simone M. Crivelli, Qian Luo, Jo Stevens, Caterina Giovagnoni, Daan van Kruining, Gerard Bode, Sandra den Hoedt, Barbara Hobo, Anna-Lena Scheithauer, Jochen Walter, Monique T Mulder, Christopher Exley, Michelle M. Mielke, Helga E De Vries, Kristiaan Wouters, Daniel L.A. van den Hove, Dusan Berkes, María Dolores Ledesma, Joost Verhaagen, Mario Losen, Erhard Bieberich, Pilar Martinez-Martinez
Magazine: EMBO Journal
Titel: Variance analysis as a tool to predict the mechanism underlying synaptic plasticity
Auteur: Aile N.van Huijstee & Helmut W.Kessels
Magazine: Journal of Neuroscience Methods
Titel: Amyloid-ß effects on synapses and memory require AMPA receptor subunit GluA3
Auteur: Niels R. Reinders, Yvonne Pao, Maria C. Renner, Carla M. da Silva-Matos, Tessa R. Lodder, Roberto Malinow, and Helmut W. Kessels
Magazine: Proceedings of the National Academy of Sciences
Titel: Synaptic plasticity through activation of GluA3-containing AMPA-receptors
Auteur: Maria C Renner, Eva HH Albers, Nicolas Gutierrez-Castellanos, Niels R Reinders, Aile N van Huijstee, Hui Xiong, Tessa R Lodder, Helmut W Kessels
Magazine: eLife
Titel: MicroRNA-132 and early growth response-1 in nucleus basalis of Meynert during the course of Alzheimer’s disease
Auteur: Qiong-Bin Zhu, Unga Unmehopa, Koen Bossers, Yu-Ting Hu, Ronald Verwer, Rawien Balesar, Juan Zhao, Ai-Min Bao and Dick Swaab
Magazine: Brain
Titel: 'Daag je hersenen uit, blijf leren'
Auteur: Kees Vermeer
Magazine: Hersenmagazine
Titel: The Effects of Sindbis Viral Vectors on Neuronal Function
Auteur: Seçil Uyaniker, Sophie J. F. van der Spek, Niels R. Reinders, Hui Xiong, Ka Wan Li, Koen Bossers, August B. Smit, Joost Verhaagen and Helmut W. Kessels
Magazine: Frontiers in Cellular Neuroscience
Titel: NEMO Kennislink 'Het besef begint te komen dat Alzheimer een aandachtsstoornis is.'
Auteur: Mariska van Sprundel
Titel: Het gezicht van dementieonderzoek 'Ons doel: de hersenen resistent maken voor Alzheimer'
Auteur: Marloes Tervoort
Titel: Alzheimer uitstellen: de weg naar alzheimerbestendige hersenen
Auteur: Franca van Dalen
Titel: Bart Chabot gaat langs bij hersenonderzoeker Helmut Kessels
Auteur: Hersenstichting


Samenvatting van de aanvraag

During the early stages of Alzheimer’s disease (AD) an excess of amyloid-beta (Abeta) impairs memory formation by corrupting synaptic function. However, not all people are equally affected by the presence of Abeta in the brain. In particular an active, learning brain is capable of building a ‘cognitive reserve’ that protects against Abeta-mediated memory deficits. A biological explanation for this protective cognitive reserve is still lacking. We are taking a unique and original approach by studying the molecular mechanisms that occur in a learning brain to provide protection against the detrimental effects of Abeta. This program builds on two mechanisms that we recently discovered and that show that neurons can defend themselves against Abeta-induced synapse dysfunction and loss. First, we discovered that the early growth response transcription factors (Egr1-4) are up-regulated in the brains of AD-patients during early non-symptomatic stages of AD, and are down-regulated in late symptomatic stages. Experiments in mouse brain slices show that expression of Egr1 alone is sufficient to neutralize Abeta-driven synapse loss. We propose to delineate this molecular pathway that protects synapses against excess Abeta upon Egr expression. We will perform a detailed analysis of the changes in the molecular composition of the synapse that occur after Egr1-4 induction. These studies aim to elucidate the Egr-driven molecular signaling that protects synapses against Abeta. Second, we discovered that neurons become insensitive to Abeta by changing the AMPA-receptor (AMPAR) subunit usage. Excitatory neurons mainly express two types of AMPARs: those that contain subunits GluA1 and GluA2 and those that contain GluA3 and GluA2. To establish whether Abeta selectively targets synapses with a particular AMPAR subunit-composition, we used mice that lack either GluA1 or GluA3. We found that mice are more sensitive to Abeta-driven memory deficits when they lack the AMPA-receptor subunit GluA1. Reversely, GluA3-deficient mice were fully resistant to AD-related synapse and memory impairment. Our data may explain how learning, which leads to an increase of GluA1 in synapses, can make neuron less susceptible to Abeta. By using proteomics technologies, we aim to identify the AMPAR-associated factors that render synapses resistant or susceptible to Abeta. This research program aims to fully decipher these key plasticity pathways, which are induced by learning behavior and are critically involved in protecting neurons against Abeta. We hypothesize that in an active, learning brain neurons become less susceptible to the detrimental effects of Abeta due to elevated expression levels of Egr1-4. We propose that this protection is achieved by an increase of GluA1-containing AMPARs in synapses. To test this hypothesis, we will apply advanced techniques in electrophysiology, live-imaging and proteomics of amyloidosis-based AD mouse-models. Importantly, our findings will be verified in human AD-brain samples and brain samples from people who, despite their old age, were not affected by dementia. We take a very promising and original approach in AD-research by studying the neuronal mechanisms that underlie the cognitive reserve for AD. The results of our studies will have important implications for the design of novel pharmacological, gene therapy-based, and behavioral therapeutic strategies that effectively protect against AD.


Looptijd: 100%
Looptijd: 100 %
Onderdeel van programma:
Gerelateerde subsidieronde:
Projectleider en penvoerder:
Dr. ir. H.W.H.G. Kessels
Verantwoordelijke organisatie:
Netherlands Institute for Neuroscience