Mobiele menu

MIASMAS - MIcroplastic Associated Spread of Microbial Assemblages in Aquatic (eco)Systems

Projectomschrijving

Aanleiding

Plasticvervuiling in aquatische omgevingen vormt een opkomende bedreiging voor de gezondheid. Met name microplastics (<5mm) die industrieel worden vervaardigd of ontstaan als plastic afval uit elkaar valt. Microplastics hebben een goed drijfvermogen en een hydrofoob hard oppervlakte. Dat maakt ze tot een uniek substraat voor biofilm vormende micro-organismen. Hierdoor kunnen ze mogelijk pathogenen herbergen, of antimicrobiële resistentie (AMR) gen uitwisseling bevorderen.

Doel en onderzoeksopzet

Een van de belangrijkste en langste rivieren in Europa is de Rijn. Op twee plekken in de Rijn zijn watermonsters genomen. Microplastics zijn verzameld met 500 μm, 100 μm en 10 μm zeven. Via infraroodspectroscopie is de concentratie en het type microplastic bepaald. De microbiële kolonisatie en AMR genen zijn bepaald via 16S rRNA-sequencing and qPCR.

Resultaten

Microplastics komen algemeen voor in de Rijn; de gemiddelde microplastic concentratie was 213.147 deeltjes/m3 water. Polyamide en polyvinylchloride waren de meest voorkomende polymeren. De samenstelling van de microbiële kolonisatie op de 100-500 μm plasticmonsters verschilde significant van het oppervlaktewater en de kleinere plasticmonsters. Er werd lagere diversiteit waargenomen op grotere plastic deeltjes. Hoe kleiner de microplastics waren, hoe meer ‘waterachtig’ de microbiële samenstelling werd. Daarnaast had drijvend plastic een latere diversiteit dan gesedimenteerd plastic. De diversiteit was hoger in de winter dan in de zomer, alhoewel de microplastic concentraties in de zomer hoger waren. De microplastics bevatte microbiële taxa die bekend staan om hun biofilmvorming (Gammaproteobacteria and Betaproteobacteria) en plastic afbraak (Pseudomonas). De microplastics bevatte ook microbiële taxa met potentiële pathogenen (Pseudomonas, Acinetobacter en Arcobacter). AMR-genen werden alomtegenwoordig gedetecteerd. Deze resultaten tonen aan dat microplastics als karakteristiek substraat dienen voor microbiële kolonisatie.

Uitvoerende partijen

Dit project is uitgevoerd door Prof. dr. A.M. de Roda Husman (RIVM), in samenwerking met KWR Watercycle Research Institute en Universiteit Utrecht.

Producten

Titel: Riverine microplastic and microbial community compositions: A field study in the Netherlands
Auteur: Mughini-Gras L, van der Plaats RQJ, van der Wielen PWJJ, Bauerlein PS, de Roda Husman AM
Magazine: Water Research

Verslagen


Eindverslag

  

  

Samenvatting van de aanvraag

As millions of tonnes of plastic end up in aquatic ecosystems globally every year, there is mounting concern about microplastics, i.e. small plastic pieces created when larger pieces break apart, or manufactured for industrial products, including cosmetics and packaging materials. Microplastics are long-lived and accumulate in food chains, potentially harming lifeforms, including humans. Besides toxic effects of plastic chemicals, microplastics in waters provide ideal substrates for microbial colonization (biofilms). Microbial communities in these biofilms can host human pathogens and enable gene exchange among microorganisms, including virulence and antimicrobial resistance genes. As plastic longevity, hydrophobicity and biofilm-enhanced buoyancy favour long-distance dispersal of microplastics, they provide novel vector substrates for spread of potentially hazardous microorganisms. Microplastics may also select for unique microbial assemblages due to hard attachment surfaces, particle-specific properties (including novel organic polymers, additives and sorbed contaminants) providing carbon sources for microbial metabolism, and secondary microbial biofilm members attaching to biofilm polysaccharides or primary colonizers. Moreover, biofilms increase the likelihood of microplastic ingestion, deposition and decomposition. While most microplastic research focuses on marine environments, microplastic dynamics in freshwater are under-researched. Freshwater accumulates microplastics from several sources, including land run-off and wastewater treatment plants, and rivers may transport microplastics to seas/oceans. Co-emission with wastewater exposes microplastics to pathogens, antimicrobials and antimicrobial-resistant microorganisms in wastewater streams, generally near densely populated areas, enabling their transport to other (downstream) areas. Few studies examined the capacity of microplastic-associated biofilms in freshwater to develop distinctive microbial consortia. Field data on microplastic abundance, sources and biofilms in freshwater are needed to assess health risks and to include lotic ecosystems in global budgets of plastic. In this project, we will determine microplastic (20µm-5mm) concentrations, their chemical properties and microbial assemblages (including human pathogens, virulence and antimicrobial resistance genes), considering also local environmental factors, in one of the longest European rivers: the Rhine, specifically at the river entry into the Netherlands and at its main estuary in the North Sea, as to monitor what is coming from upstream, what is reaching the North Sea, and what would be the Netherlands’ own contribution to Rhine’s microplastic pollution. Using established mathematical models, we will then quantify human exposure to microplastic-associated microorganisms. With a consortium of 3 leading Dutch research institutes in water research, public and environmental health (National Institute for Public Health and the Environment; Watercycle Research institute; Utrecht University’s Institute for Risk Assessment Sciences) we will determine whether/how: 1) microplastic concentrations, their chemical properties and microbial assemblages differ seasonally and over the course of the river; 2) microplastic-associated microbial assemblages differ from those on natural substrates (seston); 3) these assemblages include potentially harmful microorganisms and depend, to some extent, on local environmental factors and microplastic chemical properties. Microplastics will be collected, quantified and chemically characterized, and the total bacterial, viral (DNA viruses) and parasitic population (including virulome and resistome) in their biofilms and in seston will be determined with shotgun metagenomic sequencing. Differences in microbial composition on microplastic vs. seston samples, and differences over sites and seasons in microplastic- and seston-associated microbial consortia, microplastic concentrations and polymer properties, as well as their interrelations and effects of environmental factors, will be assessed. Detailed bioinformatics analyses will uncover biofilm-associated taxonomic, functional and metabolic profiles. This project will thus provide fundamental knowledge on the biohazards of microplastic dispersal via freshwater, including the risk of introduction of existing diseases through new transmission routes into areas/niches where they are new and can stimulate the global spread of waterborne diseases and antimicrobial resistance. This data will provide a solid and necessary anchor point for future developments in risk assessment and management of microplastics. Applicants contribute since many years to several national and international scientific advisory boards, so through these forums, knowledge gained in this project may be directly discussed with the relevant stakeholders.

Kenmerken

Projectnummer:
458001010
Looptijd: 100 %
Looptijd: 100 %
2019
2021
Onderdeel van programma:
Gerelateerde subsidieronde:
Projectleider en penvoerder:
Prof. dr. A.M. de Roda Husman
Verantwoordelijke organisatie:
RIVM

Contact

Wilt u meer informatie over dit project? Neem contact op via onderstaande contactgegevens.

Frank Pierik
Programmamanager
MicroplasticsHealth [at] zonmw.nl
Marije van der Kamp
Programmasecretaris
MicroplasticsHealth [at] zonmw.nl