Towards a leaRning mEdication Safety system in a national network of Intensive Care Units – timely detection of adverse drug Events (RESCUE- study)
Op weg naar een lerend medicatieveiligheidssysteem in een nationaal netwerk van Intensive Care Units - tijdige detectie van schade door medicatie
Het RESCUE-project benadrukt de noodzaak om medicatieveiligheid op de intensive care (IC) te optimaliseren.
Resultaten
Uit het onderzoek blijkt dat circa 17% van de IC-patiënten acute nierinsufficiëntie ondervond. Medicatie speelde in circa 19% van de ernstigere vormen van acute nierinsufficiëntie een rol.
Met de verzamelde grote hoeveelheid data uit de elektronische patiëntendossiers is het mogelijk gebleken om voor 44 medicatiegroepen, veel beter dan tot nu toe kon, te onderzoeken hoe sterk de associaties zijn tussen het gebruik van deze groepen en acute nierinsufficiëntie.
Met behulp van machine learning methoden zijn algoritmen ontwikkeld die acute nierinsufficiëntie door vancomycine kunnen detecteren. Deze algoritmen geven vergelijkbare voorspellingen als klinische experts. Dergelijke algoritmen kunnen in de toekomst IC-artsen ondersteunen bij het vaststellen van de oorzaken van acute nierinsufficiëntie, en daarmee vroege detectie van acute nierinsufficiëntie bevorderen en verdere nierschade voorkomen.
Samenvatting bij start
Problemen met medicatie veroorzaken bij ziekenhuispatiënten elk jaar veel schade. Schade die in circa de helft van de gevallen voorkomen had kunnen worden, oftewel vermijdbaar is. Ondanks forse investeringen om medicatieveiligheid in Nederlandse ziekenhuizen te verbeteren, is vermijdbare schade door medicatie bij ziekenhuispatiënten niet significant afgenomen. Een mogelijke verklaring is een gebrek aan een methode waarmee schade door medicatie snel, betrouwbaar en routinematig in de dagelijkse praktijk kan worden gedetecteerd. Dit beperkt in grote mate de mogelijkheid om effectieve verbetermaatregelen te kunnen nemen.
Onderzoek
Het doel van de RESCUE-studie is daarom het ontwikkelen van een dergelijke methode. De beoogde methode omvat het hergebruiken van patiëntgegevens die geregistreerd zijn in het elektronisch patiëntendossier (EPD) en de toepassing van machine learning technologie om op basis van die gegevens algoritmen te ontwikkelen voor de detectie van schade door medicatie. Omdat Intensive Care (IC) patiënten een verhoogd risico hebben op schade door medicatie in vergelijking met andere ziekenhuispatiënten, ligt de focus van de RESCUE-studie op deze groep patiënten. In totaal doen 14 Nederlandse IC’s mee, waardoor een grote hoeveelheid (> 100.000) IC-opnames kan worden bestudeerd.
Verwachte uitkomsten
De onderzoekers verwachten geavanceerde algoritmen te ontwikkelen, waarmee schade door medicatie bij IC-patiënten op een snelle, betrouwbare en routinematige manier kan worden gedetecteerd vanuit het EPD. Dit zal IC-afdelingen in staat stellen nog sneller schade door medicatie te herkennen, zodat tijdig kan worden ingegrepen. Daarnaast kan kennis worden verkregen over het waarom, wanneer en bij wie deze schade ontstaat, om deze bij toekomstige patiënten te voorkomen. Bij succes kunnen de ontwikkelde algoritmen mogelijk worden uitgebreid naar andere patiëntengroepen.
Meer informatie
- Dit project is gerelateerd aan: Rationalizing pharmacotherapy via performance feedback and computerized decision support in a national network of Intensive Care Units
- Er is een vervolg op dit project via NWO: LEveraging real-world dAta to optimize PharmacotheRapy outcomes in multimOrbid patients by using machine learning and knowledGe representation methods (LEAPfROG studie) - NWO: KICH1.ST01.20.011
Producten
Link: https://github.com/IYdK/RESCUE
Auteur: Izak A R Yasrebi-de Kom, Dave A Dongelmans, Ameen Abu-Hanna, Martijn C Schut, Nicolette F de Keizer, John A Kellum, Kitty J Jager, Joanna E Klopotowska
Magazine: Clinical Kidney Journal
Begin- en eindpagina: 937-941
Auteur: Izak A R Yasrebi-de Kom, Dave A Dongelmans, Ameen Abu-Hanna, Martijn C Schut, Dylan W de Lange, Eric N van Roon, Evert de Jonge, Catherine S C Bouman, Nicolette F de Keizer, Kitty J Jager, Joanna E Klopotowska, on Behalf of the RESCUE Study Group
Magazine: Clinical Kidney Journal
Link: https://academic.oup.com/ckj/advance-article/doi/10.1093/ckj/sfad160/7220031
Auteur: Yasrebi-de Kom IAR, Dongelmans DA, Abu-Hanna A, Schut MC, de Keizer NF, Kellum JA, Jager KJ, Klopotowska JE
Magazine: Clinical Kidney Journal
Begin- en eindpagina: 937-941
Link: https://academic.oup.com/ckj/article/15/5/937/6459226
Auteur: Izak Yasrebi-de Kom, Dave A. Dongelmans, Ameen Abu-Hanna, Martijn C Schut, Nicolette F. De Keizer, Kitty J. Jager, Joanna E. Klopotowska
Magazine: Nephrology Dialysis Transplantation
Link: https://academic.oup.com/ndt/article/37/Supplement_3/gfac127.001/6577539
Auteur: Murphy RM, Dongelmans DA, Kom IY, Calixto I, Abu-Hanna A, Jager KJ, de Keizer NF, Klopotowska JE.
Magazine: Journal of Critical Care
Link: https://www.sciencedirect.com/science/article/pii/S0883944123000412?via%3Dihub
Auteur: Yasrebi-de Kom IAR, Dongelmans DA, de Keizer NF, Jager KJ, Schut MC, Abu-Hanna A, Klopotowska JE
Magazine: Journal of the American Medical Informatics Association
Begin- en eindpagina: 978-988
Link: https://academic.oup.com/jamia/article/30/5/978/7048708
Auteur: Izak A R Yasrebi-de Kom, Dave A Dongelmans, Nicolette F de Keizer, Kitty J Jager, Martijn C Schut, Ameen Abu-Hanna, Joanna E Klopotowska
Magazine: Journal of the American Medical Informatics Association
Begin- en eindpagina: 1-11
Link: https://academic.oup.com/jamia/advance-article/doi/10.1093/jamia/ocad014/7048708
Auteur: Izak Yasrebi-de Kom, Dave Dongelmans, Ameen Abu Hanna, Martijn C Schut, Nicolette De Keizer, Kitty J Jager, Joanna Klopotowska
Link: https://era-apps.m-anage.com/era22/en-GB/pag/presentation/495882
Auteur: Izak Yasrebi-de Kom, Dave Dongelmans, Ameen Abu Hanna, Martijn C Schut, Nicolette De Keizer, Kitty J Jager, Joanna Klopotowska
Link: https://doi.org/10.1093/ndt/gfac127.001
Auteur: Izak Yasrebi-de Kom
Link: https://stichting-nice.nl/doc/programma%20discussiebijeenkomst%202023.pdf
Link: https://uvaauas.figshare.com/articles/dataset/RESCUE_Metadata/22309996/2